Monday, August 13, 2012

Switching From Perl to Python, Step 3 Python Data Structures

We read the Knuth, so you don't need to
-Tim Peters

After finishing first part of Python, today i decided to read about Python data structures.
Today's topics are:
Night -2-
10.  Modules
11.  Data Structures
12.  Problem Solving

While i was reading about the data structures in Python, list, tuple and dictionary implementations are very similar to corresponding Java collections list, set and map. Please check here to review some examples.

While reading about the dictionaries, defaultdict implementation was interesting, in addition, i really like the one liners, as an example:


myfile=open('names', 'r')
words=[line.rstrip() for line in myfile]
quote='''google
        excite
        yahoo
        bing
        altavista '''
#find the words that exits in file but not in quote
difference=[word for word in quote.split() if word not in words]
print difference

Some useful resources:
Python in High performance computing 
Official python documentation
Data Structures and Algorithms Using Python


Friday, August 10, 2012

Switching From Perl to Python, Step 2 Python Basics

 If you don't know any computer languages, I recommend starting with Python. It is cleanly designed, well documented, and relatively kind to beginners. Despite being a good first language, it is not just a toy; it is very powerful and flexible and well suited for large projects.
How To Become A Hacker, Eric Steven Raymond


From coffeeghost
Following topics are from Byte of Python which is a free Python book for completely beginners.
Today's topics:
Night -1-
1. → Translations
2. → Preface
3. → Introduction
4. → Installation
5. → First Steps
6. → Basics
7. → Operators and Expressions
8. → Control Flow
9. → Functions 

Resources that i have reviewed:

Switching From Perl to Python, Step 1 Which IDE to use for Python programming ?


 Python 2.x is the status quo, Python 3.x is the present and future of the language (http://wiki.python.org/moin/Python2orPython3)


i followed the instruction from vogella, however instead of installing python 2.7 directly from official python web page, i installed from enthought academic version which includes the numpy, Scipy and matplotlib. These modules will be useful when we start programming,
i do not give details for now.


Academic versions of Enthought:
Students or employees from degree-granting institutions may use these installations for an extended period free of cost.


After installing Eclipse and configuration of PyDev , i guess i'm ready for Python. Actually, i'd like to use netbeans instead but netbeans does not have python support after 7.0 versions.

Some experiments to be sure that everything works smoothly:

1-First (little) Python module (from vogella)

2- First (little)NumPy module
3-Scipy and Matplotlib module

Code is from oneau

Ok. then i'm ready for Night 1 for tomorrow:

1. → Translations
2. → Preface
3. → Introduction
4. → Installation
5. → First Steps
6. → Basics
7. → Operators and Expressions
8. → Control Flow
9. → Functions


Sunday, August 5, 2012

Binary Tree based algorithm questions


i will try to find the answers of following 4 algorithm questions which can be implemented using binary search tree (BST). Please refer to the original questions with the Python implementation at Arden's blog.
  • Binary Search Tree Check: Given a binary tree, check whether it’s a binary search tree or not
  • Tree Level Order Print: Given a binary tree of integers, print it in level order. The output will contain space between the numbers in the same level, and new line between different levels.
  • Tree Reverse Level Order Print: This is very similar to the previous post level order print. We again print the tree in level order, but now starting from bottom level to the root.
  • Trim Binary Search Tree: Given the root of a binary search tree and 2 numbers min and max, trim the tree such that all the numbers in the new tree are between min and max (inclusive). The resulting tree should still be a valid binary search tree.
To understand or polish your knowledge about BST, you can go over the great tutorial of Nick Parlenta and for the applications of binary trees you may read the answers posted in SO.

To implement BST in Java, we need to create class like:
 static class TreeNode {

        TreeNode leftReference;
        TreeNode rightReference;
        int nodeValue;

        public TreeNode(int nodeValue) {
            this.nodeValue = nodeValue;
        }
    }

With a given BST, there are 3 kind of walk can be defined, inorder tree walk, preorder tree walk and postorder tree walk. Refer to Wikipedia article to get details. While using inorder tree walk,  note that the BST property allows us to print out all the values in the Binary Search Tree in sorted order. Before, i start implementation we need to understand these terms in order to write the code.

we can implement inorder tree walk for binary search tree check and if BST is not sorted then we conclude that it's a not a BST. Both Tree Level Order Print and Tree Reverse Level Order Print can be implemented in similar way using recursion.

package pkg7binarysearchtreechk;

public class Main {

    static class TreeNode {

        TreeNode leftReference;
        TreeNode rightReference;
        int nodeValue;

        public TreeNode(int nodeValue) {
            this.nodeValue = nodeValue;
        }
    }

    public static void main(String[] args) {
        run();
    }

    public static void run() {
        // tree root node.
        int rootValue = 40;
        TreeNode rootnode = new TreeNode(rootValue);
        System.out.println("root node created, " + rootnode.nodeValue);
        // insertNode new element starting with rootnode.
        insertNode(rootnode, 11);
        insertNode(rootnode, 15);
        insertNode(rootnode, 16);
        insertNode(rootnode, 23);
        insertNode(rootnode, 79);
        
        System.out.println("print the content of  tree in inOrderTree walk");
        printTree(rootnode);
        System.out.println("print the content of  tree in preOrderTree walk");
        printPreOrderTree(rootnode);
        System.out.println("print the content of  tree in  postOrderTree walk");
        printPostOrderTree(rootnode);
    }

    private static void insertNode(TreeNode parentNode, int nodeValue) {
        if (nodeValue < parentNode.nodeValue) {
            if (parentNode.leftReference != null) {
                // Go more depth to left.
                insertNode(parentNode.leftReference, nodeValue);
            } else {
                System.out.println("LEFT: new node value " + nodeValue
                        + " ,its root  " + parentNode.nodeValue);
                parentNode.leftReference = new TreeNode(nodeValue);
            }
        } else if (nodeValue > parentNode.nodeValue) {

            if (parentNode.rightReference != null) {
                // Go more depth to right
                insertNode(parentNode.rightReference, nodeValue);
            } else {
                System.out.println("RIGHT: new node value  " + nodeValue + ", its root " + parentNode.nodeValue);
                parentNode.rightReference = new TreeNode(nodeValue);
            }
        }
    }

    // inorder tree walk
    private static void printTree(TreeNode node) {
        int comparison;
        if (node != null) {
            printTree(node.leftReference);
            comparison = node.nodeValue;
            if (comparison < node.nodeValue) {
                System.out.println("Error not BST");
            }
            System.out.println("node value  " + node.nodeValue);
            printTree(node.rightReference);
        }
    }
    
  // preorder tree walk 
    private static void printPreOrderTree(TreeNode node) {
        if (node != null) {
            System.out.println("node value  " + node.nodeValue);
            printTree(node.leftReference);
            printTree(node.rightReference);
        }
    }
  // postorder tree walk
     private static void printPostOrderTree(TreeNode node) {
        if (node != null) {
            printTree(node.leftReference);
            printTree(node.rightReference);
            System.out.println("node value  " + node.nodeValue);
        }
    }
}

Friday, July 27, 2012

String based algorithm questions

in this post, I try to implement the following string-related algorithm questions, note that as i mentioned before these questions are taken from Arden's blog, he implemented questions by using python (Please check his blog for more detailed explanations) I would like to implement using Java and try to make additional comments which I think that are useful for understanding the implementations of some type of data structures in Java programming language.
  • Non Repeated Characters in String :  return the  unique  characters in a given letter.
  • Anagram Strings: given two strings, check if they’re anagrams or not. Two strings are anagrams if they are written using the same exact letters, ignoring space, punctuation and capitalization. Each letter should have the same count in both strings. For example, ‘Eleven plus two’ and ‘Twelve plus one’ are meaningful anagrams of each other.
  • Find Word Positions in Text : Given a text file and a word, find the positions that the word occurs in the file. We’ll be asked to find the positions of many words in the same file.
  • Remove Duplicate Characters in String: Remove duplicate characters in a given string keeping only the first occurrences. For example, if the input is ‘tree traversal’ the output will be ‘tre avsl’.
In order to understand these types of  questions, it  requires to store unique key and count of values each, especially basic understanding of hashmap is essential. Please check here before you start reviewing the codes.

Ok. Let's start.

1- Non Repeated Characters in  String  return  unique  characters in a given String 

In this question, we use  hashmap and complexity is :


2- Anagram Strings: given two strings, check if they’re anagrams or not. Two strings are anagrams if they are written using the same exact letters, ignoring space, punctuation and capitalization. Each letter should have the same count in both strings. For example, ‘Eleven plus two’ and ‘Twelve plus one’ are meaningful anagrams of each other.

Two implementations have coded, basic knowledge of Multiset is required to understand the second implementation which reduces the complexity to O(n).


To test: 
        boolean result = isAnagram("Eleven plus two", "Twelve plus one");

        boolean result2 = isAnagramMultiset("ad", "daas");




3- Find Word Positions in Text : Given a text file and a word, find the positions that the word occurs in the file. We’ll be asked to find the positions of many words in the same file. 

For this questions, we use a text instead of file to find the given word's position. We create a map and to store the values, arraylist is used. For a given key, if there are more than one appearance of a value, positions are appended to the arraylist.

Map<String, ArrayList<Integer>> map = new HashMap<String, ArrayList<Integer>>();

we can test by :

findWordPosition("have a nice try did you try try try", "try");

4-Remove Duplicate Characters in String: Remove duplicate characters in a given string keeping only the first occurrences. For example, if the input is ‘tree traversal’ the output will be ‘tre avsl’.

This question best fits with use of sets, you can check the cheatsheet of java collections to make decision which collection is better for a given problem.


 Set<Character> set = new LinkedHashSet<Character>();



 Set<Character> set = removeDuplicateChars("tree traversal");
        for (Character entry : set) {
            System.out.println(entry);
        }

output of problem 3 and 4

Implementations of 4 questions

/*
 *@author beck 
 *@date Jul 27, 2012 
 *StringAlgorithms 
 *bekoc.blogspot.com 
 */
package stringalgorithms;

import com.google.common.collect.HashMultiset;
import com.google.common.collect.Multiset;
import java.util.*;

public class StringAlgorithms {

    public static void main(String[] args) {

        //1-Non Repeated Characters in String :  return the  unique  characters in a given letter.
        ArrayList<String> uniqueCharsResults = uniqueLetters("teesstedbyyourself");
        for (int i = 0; i < uniqueCharsResults.size(); i++) {
            System.out.print(uniqueCharsResults.get(i) + " ");
        }

        //2- Anagram Strings: given two strings, check if they’re anagrams or not.
        //Two strings are anagrams if they are written using the same exact letters, ignoring space, punctuation and capitalization. 
        //Each letter should have the same count in both strings. 
        //For example, ‘Eleven plus two’ and ‘Twelve plus one’ are meaningful anagrams of each other.
        //complexity is logn
        boolean result = isAnagram("Eleven plus two", "Twelve plus one");
        System.out.println("Anagram Test using sorting, Result is: " + result);
        //to reduce the complexity linear time, n, we can use hashtable
        //first store Text1 in a hastable 
        //(key, value pairs where key is the each character in Text1 
        //and value is the count of the characters) and then go thru Text2 one by one
        //character and decrease the count of the text1, if all counts of text 1 is 0 then
        //can be called as anagram Strings.
        boolean result2 = isAnagramMultiset("ad", "daas");
        System.out.println("Anagram Test using Multiset, Result is: " + result2);

        //3- Find Word Positions in Text : Given a text file 
        //and a word, find the positions that the word 
        //occurs in the file. We’ll be asked to find the positions of 
        //many words in the same file.
        findWordPosition("have a nice try did you try try try", "try");

        //4-Remove Duplicate Characters in String: Remove duplicate characters 
        //in a given string keeping only the first occurrences. For example, 
        //if the input is ‘tree traversal’ the output will be ‘tre avsl’.
        Set<Character> set = removeDuplicateChars("tree traversal");
        for (Character entry : set) {
            System.out.println(entry);
        }

    }

    public static ArrayList<String> uniqueLetters(String text) {
        //create a hashmap with key and value pairs, where key is the each letter and
        //value is the count of each letter of a given text
        Map<Character, Integer> map = new HashMap<Character, Integer>();
        //to store unique letters create an arraylist
        ArrayList<String> uniqueChars = new ArrayList<String>();
        //we check each letter in a given text, so in this problem we don't need StringTokenizer
        //StringTokenizer tokenizer = new StringTokenizer(text);
        for (int i = 0; i < text.length(); ++i) {
            if (map.containsKey(text.charAt(i))) {
                int count = map.get(text.charAt(i));
                map.put(text.charAt(i), count + 1);
            } else {
                map.put(text.charAt(i), 1);
            }
        }
        // Loop in a hashSet to get keys and values
        Iterator iterator = map.entrySet().iterator();
        while (iterator.hasNext()) {
            Map.Entry pairs = (Map.Entry) iterator.next();
            System.out.println(pairs.getKey() + " = " + pairs.getValue() + " times appeared");
            if (pairs.getValue().equals(1)) {
                uniqueChars.add(pairs.getKey().toString());
            }
            iterator.remove(); // avoids a ConcurrentModificationException
        }
        return uniqueChars;
    }

    public static boolean isAnagram(String text1, String text2) {
        //1st  method is to sort both strings and check one by one
        //sorting adds an complexity of nlogn (e.g. merge sort)
        //this code considers space, punctuation etc.
        //getChars method  may also be used here
        System.out.println("");
        if (text1.length() != text2.length()) {
            System.out.println("inside isAnagram: " + text1.length() + " " + text2.length());
            return false;
        } else {
            String sorted1 = convertToCharArrayFromString(1, text1);// 1 is for sorted return 
            String sorted2 = convertToCharArrayFromString(1, text2);
            for (int i = 0; i < sorted1.length(); i++) {
                if (sorted1.charAt(i) != sorted2.charAt(i)) {
                    return false;
                }
            }
        }
        return true;
    }

    public static String convertToCharArrayFromString(int option, String text) {
        char[] content1 = text.toLowerCase().toCharArray();
        if (option == 1) {
            Arrays.sort(content1);
            String sorted1 = new String(content1);
            return sorted1;
        } else {
            String unsorted1 = new String(content1);
            return unsorted1;
        }
    }

    public static boolean isAnagramMultiset(String text1, String text2) {
        //requires basic knowledge of Multiset from guova libraries
        //may be implemented using pure JDK specifications
        if (text1.length() != text2.length()) {
            return false;
        }
        Multiset<Character> chars = HashMultiset.create();
        String unsorted1 = convertToCharArrayFromString(0, text1);
        String unsorted2 = convertToCharArrayFromString(0, text2);
        for (int i = 0; i < unsorted1.length(); i++) {
            chars.add(unsorted1.charAt(i));
        }
        for (int i = 0; i < unsorted1.length(); i++) {
            chars.remove(unsorted2.charAt(i), 1);
            System.out.println("Multiset " + chars.count(unsorted2.charAt(i)));
            if (chars.count(unsorted2.charAt(i)) < 0) {
                return false;
            }
        }
        return true;
    }

    public static void findWordPosition(String text, String word) {
        Map<String, ArrayList<Integer>> map = createInvertedIndex(text);
        // for (Map.Entry<String, ArrayList<Integer>> entry : map.entrySet()) {
        ArrayList<Integer> position = map.get(word);
        // System.out.println("Key " + entry.getKey() + entry.getValue());
        for (Integer value : position) {
            System.out.println("Key: " + word + " its positions " + value);
        }
    }

    public static Map<String, ArrayList<Integer>> createInvertedIndex(String text) {
        //assume that text is given with appropriate
        //letters so no need for regular expressions
        //we can create a map with a key of String (each word) and
        //their positions that is integer array
        Map<String, ArrayList<Integer>> map = new HashMap<String, ArrayList<Integer>>();
        String[] words = text.split(" ");
        for (int i = 0; i < words.length; i++) {
            if (map.containsKey(words[i])) {
                ArrayList<Integer> position = map.get(words[i]);
                position.add(i);
                map.put(words[i], position);
            } else {
                ArrayList<Integer> position = new ArrayList<Integer>();
                position.add(i);
                map.put(words[i], position);
            }
        }
        return map;
    }

    public static Set<Character> removeDuplicateChars(String text) {
        // for insertion sort order LinkedHashSet is used
        Set<Character> set = new LinkedHashSet<Character>();
        for (int i = 0; i < text.length(); i++) {
            if (!set.contains(text.charAt(i))) {
                set.add(text.charAt(i));
            }
        }
        return set;
    }
}

Wednesday, July 18, 2012

1- (Array question) Given an integer array, output all pairs that sum up to a specific value k.

You may want to check the original post with more comprehensive explanation from here.

/*
 * Given an integer array, output all pairs that sum up to a specific value k.
 */
package pkg1arraypairsum;

import java.util.Arrays;

//Non-static method cannot be referenced from a static context
//requires an instance of the X class in order to call it
public class Main {

    static int currentSum;

    public static void main(String[] args) {
        Integer[] array = {0, 3, 2, 12, 4, 5};

        long lStartTime = System.nanoTime(); //start time
        pairSum(array, 6); //method execute
        long difference = System.nanoTime() - lStartTime; //check difference
        System.out.println("Elapsed value of the most precise available system time: " + difference);
    }
    //Complexity: O(NlogN)

    public static void pairSum(Integer[] array, int k) {
        if (array.length < 2) {
            return;
        }
        Arrays.sort(array);
        int left = 0;
        int right = array.length - 1;
        while (left < right) {
            currentSum = array[left] + array[right];
            if (currentSum == k) {
                System.out.println(array[left] + " " + array[right]);
                left += 1;//or  right-=1;
            } else if (currentSum < k) {
                left += 1;
            } else {
                right -= 1;
            }
        }
    }
    // is it possible to reduce the complexity O(N)?
    // Yes
}
Output